

STO-MP-SET-311 MSS-102 - 1

Multisensor Fusion and Integration Meets Software 2.0

Dr. Ramesh Bharadwaj
4555 Overlook Avenue SW

Washington DC 20375
USA

Ramesh.Bharadwaj@nrl.navy.mil

ABSTRACT
The term “Software Crisis” was first mentioned in the proceedings of the first NATO Software Engineering
Conference in 1968, and yet is still acknowledged as a crisis more than half a century later. In spite of recent
advances in computing, software systems remain brittle, expensive, and delivered late with a number of
latent flaws. The current state of affairs is particularly dangerous for Cyber-Physical Systems (CPSs), whose
incorrect or deficient operation may lead to loss of lives, and cause irreparable harm to society. However,
this “deploy and patch” attitude persists, leading to catastrophic accidents and spectacular failures. Recent
advances in Machine Learning (ML), in particular Deep Learning (DL), have entered the arena like a
breath of fresh air, leading many to speculate that these approaches will be game changers in the way CPSs
are built and deployed. Some have gone so far as to label this approach Software 2.0 to highlight their Data-
Centric, vs Human-Centric approach for software construction. Yet, Software 2.0 is no panacea. Systems
constructed using this approach have unintended functions, and are sensitive to adversarial perturbations,
which may lead to surprising failure modes in the field. In this paper we argue that, for CPSs built using
ML/DL, fusion of additional sensor information, specifically in regions of uncertain operation, will be a
game changer, and promote safe system deployments with predictable behaviours under fielded conditions.
This approach will promote development and deployment of systems that are certifiably robust and free of
unintended failures in their Operational Design Domain (ODD).

1.0 INTRODUCTION

The term “Software Crisis” was coined at the First NATO Software Engineering Conference held in 1968 in
the small German town of Garmish-Partenkirchen [1]. It referred to the difficulty of writing useful and
efficient computer programs in the required time, due to the rapid rise in complexity of the problems that
could be tackled, given the exponential growth and availability of inexpensive computing hardware, leading
to increased difficulty of software development and inadequacy of extant development methods [2]. Here we
are, more than half a century later, having to cope with software systems that remain brittle, expensive, and
delivered late, using a process disparagingly known as the “deploy and patch” approach, whose failures often
have catastrophic societal consequences. However, recent advances in Machine Learning (ML) and Deep
Learning (DL), have led many researchers to speculate that these may be game changers in the construction
and deployment of software systems.

2.0 BACKGROUND

2.1 Software 2.0
Researchers such as Andrej Karpathy (Director of AI at Tesla) have gone so far as to label this new approach
Software 2.0, to highlight their Data-Centric vs Human- Centric approach to software construction, thereby
harbouring the hope that successful deployment of systems constructed using ML/DL may finally be the
breakthrough to end the software crisis in its entirety [3]. In contrast to the “classical” approach to software

mailto:Ramesh.Bharadwaj@nrl.navy.mil

Multisensor Fusion and Integration Meets Software 2.0

MSS-102 - 2 STO-MP-SET-311

development – dubbed Software 1.0 – which is carried out by the human-intensive process of providing
explicit instructions to the computer using conventional programming languages, Software 2.0 involves a
much more abstract and inscrutable process, such as choosing the weights of a neural network, with no
human involvement in explicitly writing the code or choosing the weights. Instead, the human specifies a
“cost function” as a measure of the desired behaviour of the system, with massive computation resources
being used to search the solution space for a parameter set that minimizes the cost function, directed by a
large (labelled or unlabelled) corpus of data for “training” the system under development [4].

2.2 Cyber-Physical Systems
The promise of Software 2.0 is particularly enticing for the design and construction of Cyber-Physical
Systems (CPSs), i.e., systems which interact with the physical world (as opposed to Cyber Systems that are
deployed solely in a virtual world), as their design, implementation, and certification are far more intricate
and complex in comparison to conventional software systems, leading to escalating costs for their
development, operation, and sustainment [5]. This has led to irrational exuberance among sponsors and
developers of CPSs, such as autonomous combat aircraft and robotic vehicles, who see Software 2.0 as a
panacea to bring down development costs and improve their reliability. Termed safety-critical systems, their
unintended or incorrect operation when deployed in the physical world, however, have more serious
consequences, such as loss of life and/or serious damage to infrastructure and property.

2.3 Pitfalls of Software 2.0 and their Mitigation
Sadly, such speculative developments are misguided as Software 2.0 is no panacea. Systems constructed
using this approach have unintended functions [6], and are sensitive to adversarial perturbations [7], which
may lead to surprising failure modes in the field. Further, these systems may fall prey to silently adopting
biases in their training data [8], which is very hard for humans to analyse and diagnose. In this paper we
argue that, for CPSs built using ML/DL, fusion of additional sensor information, specifically in regions of
uncertain operation, will be a game changer, and promote safe system deployments with predictable
behaviours under fielded conditions. This approach will promote development and deployment of systems
that are certifiably robust and free of unintended failures in their Operational Design Domain.

3.0 RADAR SIGNAL PROCESSOR

In this section, we briefly describe the receiver signal processing subsystem of a UHF pulse-Doppler radar
which was implemented using a conventional – Software 1.0 – approach, contrasted with a newer design
which incorporates a signal processor based on deep learning – i.e., Software 2.0 – for automatically
detecting and tracking objects of interest. We compare and contrast both approaches, and provide
preliminary results of experiments incorporating multisensory data fusion of signal processors developed
using the two approaches, and articulate a path forward for future work.

3.1 UHF Pulse-Doppler Radar
The system under consideration is a narrow beam UHF Naval pulse-Doppler radar used for very long-range
air surveillance and tracking, similar to non-DoD pulse-Doppler radar systems whose information is public
knowledge, as available on open source platforms [9].

3.2 Conventional Signal Processor
The radar provides sophisticated pulse-Doppler processing for automatic detection and reporting of targets
within its surveillance volume. The receive signal processing includes accurate centroiding of target range,
azimuth, amplitude, and radial velocity with an associated confidence factor to produce contact data for

Multisensor Fusion and Integration Meets Software 2.0

STO-MP-SET-311 MSS-102 - 3

command and control systems. In addition, contact range and bearing information are provided for display
on standard plan position indicator consoles. The radar has an automatic target detection capability with
pulse-Doppler processing and clutter maps, ensuring reliable detection in normal and severe types of clutter.

3.3 ML/DL Based Signal Processing System
In this section we briefly describe the design of a pulse-Doppler receive processor subsystem based on Deep
Neural Networks (DNNs). The design of the radar included the selection of a suitable neural network
architecture (see Figure 1 courtesy Michael Colon). The DNN was then trained using deep learning (i.e.,
Software 2.0), on synthetically generated radar returns to automatically detect and track objects of interest.

Figure 1: Radar Processing Architecture.

3.4 Radar Signal Processor Architecture
Figure 1 illustrates the architecture of our signal processing chain [10]. The function of the signal processor
was to detect targets for each range cell of a coherent processing interval (CPI) using In-phase and
Quadrature (I/Q) data derived from the analogue front-end and the Analog to Digital (A/D) converter at the
receiver front-end. We created a DNN for each range cell individually. In order to facilitate quick
convergence, this data was conditioned based on our speculative understanding of how the radar signal
processor functions. We accomplished this by providing the signal processor the following inputs:

• The I/Q data for each pulse.

Multisensor Fusion and Integration Meets Software 2.0

MSS-102 - 4 STO-MP-SET-311

• The magnitude of I/Q returns, i.e., the square root of the squared sum of the In-phase and
Quadrature components.

• A coherent sum of all I/Q returns for all pulses within a Coherent Processing Interval (CPI).

• Magnitude of returns for reference target with 1 m2 Radar Cross Section.

• The Fast Fourier Transform (frequency components) of I/Q returns of successive pulses.

The Neural Network architecture chosen was a fully connected network per range cell with ten inputs and
one output (to indicate whether or not a target was present at that range cell), two hidden layers of 32 and 8
neurons respectively, with ReLU activation functions for each layer. The synthetic data generator comprised
of 1,000 Coherent Processing Intervals, simulated with 50% probability of the presence or absence of a
target within each range cell, together with Additive White Gaussian Noise independently generated using a
seed and a pseudo-random number generator, for each range cell.

We trained on 900 CPIs using a batch size of 32 and validated against the remaining 100 CPIs, and achieved
an overall accuracy of 90% for the test data set.

3.5 Synthetic Target Generator
In order to train the DNN on realistic target returns, we built a simulator which incorporates sophisticated
electromagnetic system models, including RF propagation and realistic Radar Cross Section (RCS)
computations. The training data was generated by suitable labelling of sensor inputs based on Ground Truth
information from the synthetic target generator. The trained DNN was validated against recorded detections
from the radar signal processor which was developed using conventional software development
(Software 1.0) techniques. We achieved a detection accuracy of over 96% on data recordings derived from
real targets.

4.0 FUTURE WORK

Although the results are preliminary, they are encouraging. However, we would like to experiment with
Multisensor Data Fusion techniques using DNNs. Due to the Gaussian Process assumption of Kalman Filter
based algorithms, we expect the performance of the DNN to far exceeded the conventional Kalman Filter
based approach, both in terms of computational requirements and object tracking accuracy. Extant
approaches seem to use a Neural Network for fusing tracks from independent Kalman Filters for each sensor,
working asynchronously. However, it is our belief that using a Recurrent Neural Network for carrying out
data filtering in addition to track creation will provide better track accuracy, thereby performing object
identification at increased confidence levels.

5.0 CONCLUSIONS

In this paper we presented a novel approach – which is based on Software 2.0 – for the rapid implementation
of signal processing algorithms and their deployment under controlled conditions. Use of Multisensor Data
Fusion improves accuracy and mitigates the effects of domain shifts, enabling neural network-based systems
to be deployed in the field. Other approaches to mitigate the effects of domain shift are needed for DNN
based classifiers to be robust and reliable. However, their low cost of construction and deployment, together
with the regularity of their run-time architectures, are compelling reasons why this approach will be
embraced.

Multisensor Fusion and Integration Meets Software 2.0

STO-MP-SET-311 MSS-102 - 5

6.0 REFERENCES

[1] P. Naur and B. Randell (Eds.), Software Engineering Techniques: Report on a Conference sponsored
by the NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968, NATO Scientific
Affairs Division, Brussels, January 1969, (231 pages).

[2] Anonymous, Software Crisis, from Wikipedia, the free encyclopaedia, last accessed May 30, 2021.

[3] A. Karpathy, Software 2.0, at https://karpathy.medium.com/software- 2-0-a64152b37c35, last accessed
May 30, 2021.

[4] D. Anderson and G. McNeill, Artificial Neural Networks Technology, ELIN: A011, Rome Laboratory,
NY, August 1992.

[5] V. Insinna, Inside America’s Dysfunctional Trillion-Dollar Fighter-Jet Program, The New York Times,
August 21, 2019.

[6] SAE G-34/ EUROCAE WG-114, Artificial Intelligence in Aeronautical Systems: Statement of
Concerns, SAE International, Document number AIR6988, issued Apr 30, 2021.

[7] I. Goodfellow and J. S. C. Szegedy, Explaining and Harnessing Adversarial Examples, in Proceedings
International Conference on Learning Representations, 2015.

[8] H. Suresh and J. V. Guttag, A Framework for Understanding Unintended Consequences of Machine
Learning, arXiv:1901.10002v3, Submitted 28 Jan 2019, last revised 17 Feb 2020 (v3).

[9] Wikipedia, Pulse-Doppler Radar, https://en.wikipedia.org/wiki/Pulse-Doppler radar, last accessed May
31, 2021.

[10] M. Colon and R. Bharadwaj, ATDT, NRL Internal Memo, April 2019, unpublished.

https://karpathy.medium.com/software-

Multisensor Fusion and Integration Meets Software 2.0

MSS-102 - 6 STO-MP-SET-311

	ABSTRACT
	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 Software 2.0
	2.2 Cyber-Physical Systems
	2.3 Pitfalls of Software 2.0 and their Mitigation

	3.0 RADAR SIGNAL PROCESSOR
	3.1 UHF Pulse-Doppler Radar
	3.2 Conventional Signal Processor
	3.3 ML/DL Based Signal Processing System
	3.4 Radar Signal Processor Architecture
	3.5 Synthetic Target Generator

	4.0 FUTURE WORK
	5.0 CONCLUSIONS
	6.0 REFERENCES

